Y

MASTER

UCID- 17526 Rev. 2

. Lawrence Livermore Laboratory

TECHNOLOGY TRAINING PROGRAM AIMED AT INCREASING

' ' ’ THE PRODUCTIVITY OF
THE MST-80B

MICROCOMPUTER
TRAINER

G. D. Jones/E. R. Fisher/and J. M. Spann

April 1, 1980

Th an informal repo ded
primari ly for interna | or limited
eeeeeee | distribution. The opinions
d concl tated a h f
h hor and may or may not be

those of the laboratory

Prepared for U. S. Department of
Energy under contract

No. W-7405-Eng-48.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

MST-80B Microcomputer Trainer

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereaf. The views and nnininns nf authars evpragead horein do not
necessarily state or reflect those of the United States Government or any agency thereof,

L
i
i il

i
Il

b e
R
| ‘.v'u“ if

i
=

iy

PREFACE

Microcomputers are bringing about a revolution in the design of electronic
systems. ATl electronic design is being affected by the potential for better,
cheaper, faster, and smarter new systems using microcomputers. With all this
activity, education has become a great concern. Althrough many technical
people have heard of microcomputers, relatively few know exactly what
microcomputers are, what they do, and how best to apply them.

The Lawrence Livermore Laboratory (LLL) is a high-technology, energy-related
research laboratory that has been a forerunner of microcomputer development
and application. Their Technology Training Program (TTP) is patterned after
hands-on training originally devised to rapidly educate their own employees
about microcomputers. TTP was initiated to expand this hands-on instruction
by reaching other energy-related industrial and governmental organizations as
well as educational institutions. To expand this sphere of training even
further, TTP Toans videotaped lectures, provides lecture notes, and, in some
cases, lends equipment or aids the instructor. The MST-80B trainer (the
"trainer in a briefcase") was designed and fabricated as a part of this
technology transfer effort and is now being built by more than 30 colleges for
use in their own classes.

The MST-80B is a significant contribution to the effort of the electronics
industry to effectively educate potential users of microcomputers. This
"trainer in a briefcase" provides the user with hands-on experience in
state-of -the-art microcomputer architecture, programming, interfacing and
application design; learning these techniques is almost as easy as opening the
MST-80B briefcase itself! This trainer, while simultaneously reinforcing and
expanding comprehension, allows the user to immediately assemble hardware and
apply the concepts developed in the classroom.

-§i-

TABLE OF CONTENTS

CONTENTS

Frontispiece .
Preface
Abstract
An Introduction to the MST- 8OB .
Hardware Features of the Trainer .
Monitor Program . .. e e e
Operation of Keyboard Us1ng the Hex/Oct Monitor
Schematic of MST-80B Microcomputer Trainer .
Monitor Subroutines as a Call From a User Program
Sample Program for the MST-80B . .
Using Breakpoints in Program Debugging .
Acknowledgements . -
APPENDIX

I Summary of 8080 Instruction Set .

II 8080 Assembly Language Reference Card, A]phabet1ca1 L1st1ng .

IIT 8080 Assembly Language Reference Card, Numerical Listing
IV Program Listing, MST-80B Microcomputer Monitor Program

C-iid-

PAGE

THE MST-80B MICROCOMPUTER TRAINER

G. D. Jones/E. R. Fisher/and J. M. Spann

Electronics Engineering Department
Lawrence Livermore Laboratory

ABSTRACT

The microcomputer revolution in electronics is spreading

so rapidly it is difficult to educate enough people

quickly and thoroughly in the new technology. Lawrence -
Livermore Laboratory's MST-80B was developed as a way to
speed learning in our in-house training courses, and it is
now being widely used outside LLL. The MST-80B trainer is

a complete, self-contained, microcomputer system housed in

a briefcase. The trainer uses the Intel 8080A* 8-Bit
Microprocessor (CPU), and it has its own solid-state memory,
a built-in keyboard, input and output ports, and a display
for visual output. The trainer is furnished with a permanent
"Monitor" Program (in Read-Only Memory) that allows users

to easily enter, debug, modify, and run programs of their
own. 4

AN INTRODUCTION TO THE MST-80B

The LLL MST-80B is a complete microcomputer system self-contained in a
briefcase for portability and easy usage. The microcomputer was designed as a
training device for LLL's Technology Training Program (TTP), allowing students
to explore the hardware and software capability of a typical microcomputer.

*Reference to a company or product name here or elsewhere does not imply

approval or recommendation of the product by the University of California or
the United States Department of Energy to the exclusion of others that may be
suitable.

The trainer uses the Inte1'8080A'Microproces$or and supporting integrated
circuits. It has its own set of solid-state memory elements so no external
memory is required. Both random-access read/write memory (RAM) and
programmable read-only memory (PROM) are provided. The MST-80B has a 244key
keyboard and a 3-digit numerical display for the student to communicate with
the microcomputer. This input/output (I/0) combination eliminates the need
for expensive and bulky I/0 such as a teletypewriter. The keyboard and
numerical display can be used with either the octal (base 8) number system or
the hexadecimal (base 16) number system. Either number system can be selected
by simply depressing a control key.

The trainer includes a breadboard socket so that experiments can be intcrfaced
to the microcomputer through an 8-bit input port and an 8-bit output port.
This allows the student to learn hardware interfacing techniques as well as
sof tware programming. The MST-80B also has ten uncommitted Tight-emitting
diodes (LEDs) that can easily be connected to display the state of any desired
signals (address lines, data lines, and status). These can be used when
operating the trainer in the single-step mode or the normal operating mode.

HARDWARE FEATURES OF THE TRAINER

Figures la and 1b show the complete trainer in its case. Figure 2 is a
closeup of the computer circuit board showing the keyboard, display, and
electronic circuitry.

The MST-80B uses Intel's 8080A Central Processor Unit (Microprocessor or CPU)
and supporting integrated circuits. The 8080A is a second-generation
microprocessor, with an 8-bit word and 78 instructions. (Appendix I lists the
available instruction set.) The MST-80B has: '

o 512 bytes of RAM memory.

0 Sockets for three 1702A PROM's (768 bytes). It also includes one
uncommitted socket that can be jumper-wired tuo a 24-pin ROM of

user's choice. Normally, the Monitor Program resides in PROM @ and
PROM 1.

FIGURE 1la.

FIGURE 1b.

The MST-80B Microcomputer Trainer

LED Status
Power Supplies Indicators /»P'emory

Breadboard
Socket Display Keyboard

Top view of the MST-80B Microcomputer Trainer showing location of
parts.

3 1

.

LAWRENCL
LIVERMORE
LABORATORY

-

seopweveeal

Sl .

ves e s

=

e
ST E YA S S S e
(R R AR 1 fangenry

i L)t

L e me d@ e tegsssns

[T ST S —
sevs v

ol

se Ny

R
T T e S
2R me:

: e i VWMMW

©60060000¢

RIS

A closeup of the circuit board for the MST-80B Microcomputer
The display is just left of the "C" key.

Trainer.

FIGURE 2.

0 A 24-key keyboard. This input device is accessed through memory
mapped I/0. (See Figure 7 for a memory map.)

0 A three-digit display with full, hex-number capability. This output
device is used by calling the DISPLAY subroutine-in the Monitor.
(See the Monitor Subroutines...., page 13, for a description of how
this subroutine is used.) '

0 One 8-bit input port. Address = 1.
0 One 8-bit output port (latched). Address = 1.
0 Single-step capability.
) Ten uncommitted light-emitting diodes (LEDs) that can easily be
connected to display the state of any desired signals (address
Tines, data Tlines, status, etc.). These can be used when operating
in single-step mode.
0 A self-contained power supply.
0 A prototyping area for user experiments.
Figure 3 is an operational block diagram of the MST-80B, and Figure 4 shows
the panel connectors used to interface the trainer with experiments. The
figure includecs detailed information on each signal and its connector pin

number. Figure 5 is the schematic diagram.

MONITOR PROGRAM

The trainer, as supplied, includes a'Monitor Program (Hex/Oct Monitor) loaded
in PROMS @ and 1. This Monitor Program allows a user to enter programs into
RAM memory, to select and examine memory locations, change contents of
locations, and run user programs from specified starting addresses.

The Monitor Program also includes a debug routine to assist users in debugging
their programs. This routine allows the user to insert breakpoints FF16* in
programs. When such a breakpoint is encountered during program execution, the
break routine in the Monitor Program is entered; it saves all the CPU
registers and the breakpoint address, and will display 273 or BB** to s1gna1
the user that a breakpoint has been encountered.

The contents of the CPU registers and the breakpoint address are saved in a
group of dedicated memory locations on memory page 7.*** These locations

can be examined by using the DISP (display) feature of the Monitor Program
and, if desired, can be changed to new values using the ENTER.feature of the
Monitor Program. (A detailed explanation of these features is included in the
sample program discussion later in this report.) '

The RUN feature of the Monitor Program starts the user's program with the CPU
registers initialized to the current values found in the dedicated memory
locations. (This allows an operator to change these values before pushing
RUN.) Figure 6 is a flowchart of a sample program using the Monitor Program,
Figure 7 is a memory map for the computer system. The flowchart for the
monitor program itself is displayed in Figure 8 and a complete program listing
js included as Appendix IV.

OPERATION OF KEYBOARD USING THE HEX/OCT MONITOR

The MST-80B keyboard layout is:

c|Do|E|F| RESET| EXA
8{9|A]|B]|RUN LDH
4 (5|6 |7 |Dpisp | n/0
g1 |23 ENTER]| s

*The subscript 16 on a number indicates hexadecimal (base 16) representation.
**Disp1ay depends on a user-selected mode: 273 is the octal display, BB the
hex adec imal.
**The locations used are tabulated on page 15 of this report.
-6-

%
%

S AP T -

S

11 2 3 |enTalsTeP

41516 "/ |osp|Hso

8 9 Q B RUN [LDH | T

Operational block diagram of MST-80B Microcomputer Trainer.

N//////// /////////////////////////7///

/ A
W 1 N m
/ N T] e B ;
> N s 8 B A 1
N I e I P AN
NRU X T m m “M w H _I_I_

...... NN I I NS B N 3 e 7 | 1 I (= B

| ! NEN > N _ =y " | & a -

N | // H \ I . m}---l--.m (S

SIN B s N

N Gea

B ZE\ =il ; Y

TN i = FER =

L | \ o W_
/ Ny

S\
00000000 - 00000000 o~ 00000000 ™ 00000000 <

FIGURE 3.

*
B B
(@ I @]m) AB7|@ J2 @] AB1S
170 0]1@ Y AB6 | @ Q] AB14
02{@ o DZ{ AB5 | @ ©] 813
03|@ Ol A8t | @ CY T
170 OUT 170 IN
L 4 oln (" 83|@ O] ren
051@ ©ln: AB2| @ ©| AB1p
ADDR - | p6] @ Ol s A8 | @ - J L
07{ @ Ol A2 | © O] AB8
LCE]) Lo
DATA
& ‘
007 |@ I3 @JHMEM R INT REQ{@ J4 @LITt |
0B6 | @ -] [E INTE«© oL 2
e 085 |@ o|7or WAIT-5{ @ OfuLTe 3
& o84 |©@ Q|70 W HOLD-»{ @ O] LITE 4
CNTL 083 | @ O] T2 HLDA« © OLITES
0B2 | @ O] S ¢ ROY - @ ©LITE 6
081]@ Q] \c LITE 12| @ Q|Lite 7
10 o8 |@ Y TR LITE 9 |@ o)L s
2Q
30
-8 ‘O
H O
[an]
ol Q32
| = 'Or
— L
TN = 8Q &
+ 12— 9
-12V — O
o = JRLLO,
[
i
| -
|
: > C D E F |l reser || exa
20 .
. IC36 1C37 1c38 8 9 ‘A B || R LDH
' = if —'ﬁr_—'—"’l = RUN
4 5 6 7 ISP H/0
ss
¢ | 2 3 ENTER s
FIGURE 4. Panel connectors used to interface MST-80B Microcomputer Trainer.

-8-

»

“ 5 ey .ty el
I) 4 +SVY
L el | ; RP2
J e 7404 LED's
AT Y i (2101 330 |\
o BELE A ; \ e e
ARG ABI ABZ ol iS50 13
o| 4814 ik b |
= | | i e CRA
§ 13 1" L) i == 193 AQ\ \7.' |
o Gy E v ‘*?77404 | | o 20 R
45 ! I
1Y : fET " 0 & B 14 5 \\
o £lc “ AL o b)
A o ph) [] | RERE (4] . Q 20 Eem |
D e 10K S [J []LM Ljel7]8]s [lo\r iy El vy B 3rs+7c 12 18(| pg A e <_ & 3 ,
£10) v of| aniz L E r [5 {> 7 2 <} T3 el (25 & o R ‘
' y m m m E) & 8 Qe o ‘ o 2
o| anr0 8 g u v [2l @ [z u © 15| o g;; i |
gleany m M m pATA N | © 200~ W cra | I
o| 482 RESPLs s ST 2e) o|Da ope 1fina2 4 !
f CR7 ,
o| AB7 r‘]3l.._1 O STEP O |Ds lo s Al AN s ;
ik 2 o|oe TRE
1S 2 [usse m L R !
gi=s s Q'J"/T om) 105 =120 :
: (o
p— 874 o | ABS IS [0 R 55 !
2| afllnaon|
Ho| 483 a1 o Hriw
. EEl e
o| 48z
PR eSS ey °
o| #81 o
o| As0 KEY 8D o
- o
73 N °
S AB9 |21, 1
0 ve Al agg 3l
O| OBl ppis g3y 8 S 8205 3
7420 -s¥ —0 o o0— +12v
8 o\l ibas 7 r 2 @ 4p I Sela 15[e/ 16| p 3 5 ?
i i wh=ie 4 ko e T 1 ol 2122 il =—=—olo o—-9v
e T
o ! 2 =3 wars ol pgz AR —qr A2 _§ 3 SELG 188 ljdsudstes io e Ty
o g % i = e T T o o SV —0 0 O—— +5V
o—4 S - 10 52272 From = ABRVY _1 9 12 7 3 s O [Dé 50 :5 ! 24 \) ABS
R3 Dz |- £ ~—o| wBx o|o7) oool ¥ [B o— ABS
=) 3o : 3 =)
o s © of ose A8l & i DRI oigio i D :‘1 0 o— ABY
. Ji = Rl 19) £ DB& —o 5 o 0 O— nB &
o— { |o SRS 5 : —Ho| o& 7404 (%4) DBS B e bl o o
o - B iz 21 ~o| R 084 _000!Y B [Poo o— aea
o5 : 7 e 8 S| wrww DBl _ o000l 5 5o o AB3
o—| SV S LRI 12 = 1 2
—_— e T AR eC <2 | | e (o o Yo i (RS 00— ABZ
o / ¢ A A Blo| 7w o 0o P e g
o_l. Zay LTT o o S TS78 1| =rer FZ ? DB oA o ?r ABD
2v Tﬁ Jas| B 2E 22 Sk o INTA
o— +1 K i 5
S : -9V +5V
e 2v G l DY La‘ S : 5 @ : i v /l 10)l
o - = ete iy [
o O T e = 5] B ,/g : SEL® 2 M mﬂ 23j22 |35 V3 |12 : : =t
e # jﬁ%&—m e e R J,e ’ 5 NOTE
(=] 0 o\
.:1 T 4.1 pd/sov I] - % TYPICAL CONNECTION
5.000 MH= 2 wlaa OF ABQ® THRU AR9,
B S A /77 ABE b DR2 ~=Ru DBY ANL
— “ <& ARG 8]As TROW 4
W J &7 .5 4
f ». i 1702A A 02 A
SEL S ’ = W B ae7 _1[m - 7 7 Ags _19]as 1702 1702
: = 313 ABL AL A . “ Ans 20| 24
> ABS _5|As s s s 83 2
ABA _is|Aa s s s ABD =LA TYPICAL FOR
ass s @ !] @] © aB2 a2 REFEG 25
AB2 _2JA 2 2 2 agl _2lAY
g i 12
ABl 3l = El PARA 2] 21 3] 2Nz 80 _3|Ad
ABP_LIAS ° : * B i B B, D% D B% O
oee 2o D84 _9] oBg_2 DB4 _2] Ll R e e Al T [- | [| I
= oe) %hjpz | pes 9 ol 10} pes 19| = =
oe2 /o3 DB og2 !} oes Y |
o83 _21/04 D87 12 oe3_'2 ca7
Rlw CE
e 14 s [e i3 R e Tn
SELGL | SEL7 [g e |
B = N o o Y - Bl ;
el P G C 74 MR REVISIONS e S|
G T A S) Al PAUISC “ ot B CHANGE S 9/ 761 e
—+ =
g it A | ML COMP cHANGES [5%] pos
‘ MO CR\4 CRI2 & azy SNTORGTE REV | ZONE | DESCRPTION | DATE [ORAWN] APPROVED
-12v 4> -9V A Y e e I e i
39, CRI3 CRU i o AN & A= o R o Vel o E
-t 35 ORIGINATOR 3 i - 4
3l Ll T :
41 Sov cgl* _5v r—————————————I DRAWN DATE 5
Ty 21 3L L'::;F) = C36 : PSI £l s Pl | = it = [GROUP[BASIC PACKAGE NO| SUB [TYPE[REV
- CHE DATE
(HEX)SELT A; 5V a—i— —H—— |] A uu\mr«xmmmmﬂv LE4 lo — 307 S l=
-2V ¢_—————-ﬂz‘ 2A | APPROVED DATE ELECTRONCS ENGINEERING DEPARTMENT L
INTSIA ,.ﬁl-J H l Unrvacsity of Caklorrea, - Livermars, Cattornss | I SHEET [OF [

1 v 0 Ol P

FIGURE 5. Schematic of MST-80B Microcomputer Trainer.

The MST-80B keys function as follows:

RESET: -

DIGIT
KEYS:

L DH:

DISP:

This key resets the system and starts the Monitor Program running.

These keys cause the selected digits to be entered into the display
in a left-shift mode. (Care must be exercised when entering numbers
to ensure that the intended number is entered, since the display is
not cleared but simply shifted left. For instance, if you want to
enter a 1 into the display, you should push @1 to insure that any
existing number is completely replaced.) Keys 8 through F are
functional only in hex mode; they are ignored when in octal mode.

The current value in the display is also stored in a memory location
named KYTEM,

Load High Order Address. To address any location in memory, the

user needs to specify the complete address. The MST-80B addresses”
are two 8-bit bytes: the high order address and the low order
address.

The high order address is specified by keying the desired value into

the display and then pushing LDH (LOAD H). This stores the value in
a memory location called HVALU for later use by the Monitor Program.

The low order address is-specified by the current contents of the

display whenever it is needed, i.e., in RUN or DISP operations. Its
current value is kept in a memory location called LVALU.

Display. When it is desired to examine the contents of a memory
location, the DISP key is- depressed. The high order address is
selected by entering the desired value and using the LDH key, as
explained above. The low order address is then keyed into the
display; then, the DISP key is pushed. This will cause the contents
of the desired address to be displayed.

-11-

ENTER:

EXA:

RUN:

SS:

The ENTER key is used to enter new values into specified locations.
ENTER also automatically increments the address value, allowing the
user to‘quick1y examine, or to enter new values into, consecutive
locations in memory.

The address is set by using the DISP key since the present value
should be displayed before you enter a new value. After pushing
DISP, a new value may be keyed into the display; when ENTER is
pushed, this value will be entered into the currently-addressed
location.

In addition, the address is incremented and the contents of the next
consecutive location are displayed. That value can either be
re-entered by pressing ENTER again, or a new value can be keyed in
before pressing ENTER.

Examine address. This key displays the current value of the Tow

order address. The key is particularly useful if, when you are
examining a program (stepping through, using ENTER), you forget
where you are,

this key allows you to start a user program at any specitied
address. Ihe address is specified by depressing the LDH key to
enter the high order address, then keying the low order address into
the display before pushing RUN. Remember, RUN initializes all CPU
registers from dedicaled memory locations belure slarting the user
program.

Single Step. 'For the sinqgle step mode, this key advances the
program to the next step. (The toggle switch Tabeled SS-RUN must be
in the SS position before the SS key is functional.)

-12-

-

H/0: ~ Hex/Octal. This key selects the desired keyboard mode. After first
turning on power, when RESET is pushed the keyboard will be in hex
mode. Depressing the H/0 key will then cause a switch to octal
mode. Depressing the H/0O key again will cause the mode to switch
back to hex.. In short, depressing the H/0 key changes the keyboard
mode from its present mode to the other mode.

MONITOR SUBROUTINES AS A CALL FROM A USER PROGRAM

Two of the routines in Hex/Oct Monitor are Written as subroutines and may be
called by a user program:

The KEY routine in the monitor program is useful when a user's program
requires operator interaction. The keyboard is convenient for this purpose.
When KEY is called, an appropriate number key for the mode in use must be
depressed by the user before a return to the user program will be completed.
KEY returns to the user with the C register containing the value of the number
key depressed. (The C register contains this number in the low order hex
digit, and in addition contains the previous key entry in the high order
digit. The KEY routine is called by a CALL KEY instruction (CD 59 @Q)ls.

Two precautions must be observed when using the KEY subroutine. First, the
routine uses the A, B, C, H and L registers. If the user program also
requires these registers, they must be saved before calling KEY. Second, only
numerical keys can be used when KEY is called. The control keys are not
decoded in the KEY subroutine and should not be used. Also, numerical keys
larger than 7 will be ignored when 1n octal mode.

The DISPLAY routine in the monitor program is another useful subroutine
available to the user. Whenever the user wants to send a number td the
digital display, this routine should be used. The subroutine is called by a
CALL DISPLAY instruction (CD 52 (bl)16 and will display the number currently
in the A register in whichever mode (hex or octal) is presently in use. This
subroutine uses the A, B and C registers.

-13-

SAMPLE PROGRAM FOR THE MST-80B

A sample program for the MST-80B is given below; Figure 6 is a flowchart for
the program. This sample program can be used to demonstrate the operation of
the MST-80B and the use of the monitor program in HEX mode. (Since the
MST-80B is programmed in machine language, program "steps" are often written
as mnemonics--abbreviated indications of what the instruction does. For
example, MVI means "MoVe Immediately"; MVI A, P means "MoVe Immediately (into
the Accumulator) zero(s)." Many of the mnemonics found in MST-80B programs
such as this one can be easily understood from the context. If you have
questions, Appendix I includes a complete list of 8080A instruction mnemonics
and their meanings.

MEMORY MACHINE
LOCATION CODE OPERATIONS
20 3E MVI A, 0 ; CLEAR AC
g1 1)
@2 57 AGAIN: MOV D, A 5 SAVE A
@3 CD CALL DISPLAY ; SEND AC TO DISPLAY
g4 52
25 g1
@6 7A MOV A, D ; RESTORE A
@7 6 “MVI B, @ -+ CLR B REGISTER
@8)
79 QE] MVI C, 40 ; PUT 49 IN C REGISTER
@A AQ
@B P4 LOOP: INR B ; INCREMENT B
@Cc : CA JZ Luov ; DO IT AGAIN
@D ?B
]S . 76)
@F gD DCR C ; DECREMENT C
10 c2 JNZ LOOP ; LOOP UNTIL ZERO
11 ¢B
12 6
13 Cé ADI @1 ; ADD ONE TO AC
14 g1
15 C3 JMP AGAIN ; GO DISPLAY AC & DO AGAIN
16 g2
17 g6

-14-

PROGRAM FLOW CHART

‘ START)
CLEAR
AC

AGAIN: i

DISPLAY
AC

v

CLEAR
B REG

v

puT 4016
IN C REG

OOP"l

INCREMENT
B REG

N()
YES

DECREMENT
C REG

NO
YES

ADD 1
10 AC

FIGURE 6. Flowchart for MST - 80B sample program.
-15-

SPLIT

36@/F@ STACK PTR

(Page 7 locations used by Monitor

CONIENTS

KYTEM} current value

LVALU J of display

HVALU

PCL

i } PCSTO.

PSW* }
REG
REG

REG}BSTOR

FLAGWORD

D7 D6 D5 D4 D3 D2 D1 D@

S

4

g |Aclp|p|1]cy

AUX CARRY —M—-

HEX OCTAL
H L
ppop ppp 000
PAGE @ (PROM) '
MONITOR PROGRAM
POFF ppp 377
g1p0 ppl Pop
PAGE 1 (PROM)
MONITOR PROGRAM
D1FF g1 377
p2p0 pp2 pPo
Program:
PAGE 2 (PROM)

OCTAL/HEX
p2FF ppe 377 LOCATION
P390 P03 9o 267/B7

PAGE 3 271/89
UNCOMMITTED SOCKET 272/BA
273/8BB
A3FF @3 377 274/BC
275/8BD
papp [L) 276/BE
PAGE 4 277/8F
UNCOMMITTED SOCKET gg?;g?
ParF pp4 377 302/C2
393/C3
p500 pps5 00P 3g4§c4
PAGE 5 3@5/C5
KEYBOARD
@5FF aps 377
pepo 06 PP
PAGE 6 (RAM)
P6FF g6 377
p700) po7 POY '
PAGE 7 (RAM) <
REGISTER STORAGE SIGN ——
& STACK
B7FF pp7 377 ZERO
p8pp g1p .p0p
L NOT USED A
au IN MST-80B N PARITY
FFFF 377 377 _ CARRY
FIGURE 7. Memory mép for MST-80B Microcomputer Trainer.

-16-

* Program Status Word

¢

L)

First you must load the sample program into memory. Before you start, you

- need to decide where/to load it. Let's put it in memory page 6, starting at
location ¢ (absolute address = 060¢ hex). First, key @6 into the display and
then push the LDH (load H) key. This sets the high-order address (high byte)
to page 6. Next, key 00 into the display and push the DISP key. This will
display the current contents of location @ on page 6. Now you can key in the
machine language code for the first instruction, 3E (MVI A), and push the
ENTER key. This will enter the 3E into location ¢, and will also display the
contents of the next location (location 1). Now you can key in the next code,
®d, and push ENTER again. The @¢ will be entered into location 1, and then
location 2 will be displayed. Continue this process until the entire program
is entered. | ’

If you make a mistake while keying in a number, just continue to key in until
the correct value appears in the display. (The entered, displayed, number is
- not used until a control key is pressed.) If you forget where you are at any
time while loading the program, just press EXA (examine address), and the
current low-order address will appear in the display. You can continue on
from that point by first pushing the DISP key and then the ENTER key. Or you
can key a new address into the display; then, pushing the DISP key will allow
you to continue from thét address.

After the entire program has been keyed in, you may want to check it for
correctness. This is done by keying the starting address into the display (¢¢
for our sample program), . pushing the DISP key, and then repeatedly pushing the
ENTER key. This will step through the program sequentially and display each
Tocation so it can be checked. If you find a mistake, just key in the correct
value before the ENTER key is pushed.

After the program is loaded satisfactorily, you can run it if you desire. To
run the program, key the starting address (@@ for our sample program) into the
display and push RUN. If you are not sure what the current high order address
(HVALU) 1is, you should set it to the correct value using the LDH key as
explained previously.

-17-

USING BREAKPOINTS IN PROGRAM DEBUGGING

The Monitor Program for the MST-80B allows users to set breakpoints at desired
locations in their programs. This can be a very useful capability,
particularly when debugging a program. The use of breakpoints in program
debugging can be demonstrated using the BREAK routine with the sample program
introduced in the preceding section.

As can be seen from the flow chart of the sample program, Figure 6, the
program is a simple count routine that will cause the display to count up at a
fixed rate determined by the constants in the counting loops. If you execute
the program as it is written, you will notice the display is counting very
rapidly. This 1is not intentional and is caused by a program bug. Let's use
breakpoints to find it.

Looking at the flow chart, you can see that there are two counting loops. The
first loop counts up to FF16 and then goes back to @. Then the second

count loop is entered. This second loop counts the number of times the first
loop must go through a full count (1@@16 counts). Since the C register is
initialized to 4@16’ the second Tloop counts 4@16 counts; hence the total
counts for both loops is 108, x 40, (=16,38410) counts. After the

full count is reached, 1 is added to the A register and its contents are
displayed. Then the count loop starts over. This program runs endlessly
until stopped by the user. ‘

The first thing to check is to see if the registers are initialized
correctly. This can be done by inserting a breakpoint (breakpoint code

ti

FF16) in place of the INR B instruction at memory location #8. Now run the
program. (Remember to set the high-order address to page 6.) When the
breakpoint is encountered during the running of the program, the BREAK routine
will stop execution of the program at that point and store the contents of all
CPU registers in the dedicated memory locations shown below. A BB will appear
in the display to signal you that a break has occurred.

-18-

BREAK ROUTINE MEMORY STORAGE LOCATIONS (MEMORY PAGE 7)

(HEX ‘MODE)

ADDRESS CONTENTS ADDRESS -CONTENTS
BB PCL Breakpoint co B REG
BC PCH] Address : Cl E REG
BD PSW . C2 D REG
BE A REG ' C3 L REG
BF " C REG S : - C4 - H REG

The BREAK routine also automatically sets HVALU to page 7. So, since BB is
already being displayed, if you now push the DISP key, the contents of memory
Tocation BB on page 7 will be displayed. This location contains the Tow byte
of the address where the break occurred. The high byte of the break address
is stored in location BC, so pushing the ENTER key will cause the high byte to
be displayed. Repeated use of the ENTER key will allow you to examine the
contents of all the CPU registers.

Register C is stored in location BF and, for our sample program, should
contain 4@16. Location BE (A register) and C@ (B register) should contain
zero. If these locations contain the correct values, replace the INR B
instruction (code @4) in location @B and put a breakpoint (FF) in location @F
in place of the DCR C instruction. Run the program. When it breaks, examine
location CP again to see what the B register is now. It should be a zero
when the count loop is existed. But it is not zero! The bug must be in this
loop.

When you examine the program, it is apparent that the JZ Loop instruction
which tests for completion of the count fs testing the wrong condition. It
exits the loop on zero count rather than non-zero count, so you need to
replace the JZ instruction with a JNZ (code C2) instruction. Replace the
breakpoint in @F with DCR C (@D) and run the program. It should now run
correctly, with the display counting much more slowly.

-19-

This may appear to be a trivial bug and should be apparent by just inspecting
the program listing. But this is one of the most common programming errors
(tHat is, using the wrong sense of a test instruction), and is usually quite
difficult to find in a more complex program.

ACKNOWLEDGEMENTS

The contributions of the following people are gratefully acknowledged.

e Stanley A. Nielsen

TTP Program Engineer

e Stephan A. Mick Trouble shooting and checkout

e Alan E. Ragsdale Conversion of SofLware from velal Lo hexadecinal
e J. W. Spencer - - Technical writing/editing

e C. W. Jensen - - Technical writing/editing

-20-

N

coL
START .
SET COL PTR . CNTL
- 10 cOL 1
LOAD TRBLE GET MEMORY ! GET MEMORY LOAD GENERAL
INIT STACK PTR . POINTER POINTER FROM | ! POINTER LOW REGISTERS FROM
AND OFLAG H AND L VALU FROM DISPLAY MEM STORAGE
LDKY , 7 .
— - —) I
READ COLUMN : Coﬁﬁﬁﬁ?iEY PUT CURRENT ! GET MEMORY
SEND 00 DISPLAY VALUE POINTER HIGH LOAD PSW
TO DISPLAY IN MEM LOCATION | . FROM HVALU
M s A . \} 1
KEY DOWN YES TV GET CONTENTS - GET
IN THIS POINTER OF THIS START AODRESS
CALL KEY coL . LOCATION FROM HaL VALU
? r
NQO \I/ ' \l/ \I/
KEY ISPLAY CONTENTS | !
i OQ-NEXT MEM i ! DISPLAY IT H;;”%Jt.;;BéEAM
INCREMENT LOCATION |
READ KYBD COLUMN PTR Is
THIS NO \I/ I
COthN STORE NEW
LOAD TABLE NUMBER
POINTER i IN KYTEM
1s YES '
Y
Es ANY KEY \L
DOWN
2 : LOAD TABLE |
NO DECODE KEY POINTER DISPLAY CURRENT
L VALUE
DEBOUNCE J/
DELAY
JECODE KEY :
ADD 2 TO 1s IT
READ KYBD N
CORRECT VALUE \ ZERO 0
FOR COL #2 | ? J/
. .
|
N . YES SET OCTAL MODE
NO 15 SHIFT NEW DIGIT GET CURRENT)
ANY KEY INTO OLD NUMBER DISPLAY VALUE
SET HEX MODE
DOWN
?
J/ \l/)lk KEY
STORE ANU - STORE IT
: DISPLAY 1T IN HVALU KEY
DEBOUNCE !
DELAY : o I

]
i
FiGURE 8. Flowchart for HEX/OCT monitor program for MST-80B Microcomputer 1

Trainer. I

21 - 22

S

Summary of 8080 instruction set.

Summary of Processor Instructions
By Alphabetical Order

APPENDIX

tagvuction GodelM S @ insruction Code'® Oeca
Mine o aic Desaription 0; Dg Dsg 0 Dy D; Dy Dp Cycem Maemonic Dmaigtion 0; 0g Oy Oy Dy D 0y, Dp Cydm
AQl Add immediste to A with 1 o0 ¢ v 1 o1 o 7 VI M Move immediate memory o 0 1 1 6 31 v 0 w0
arny - MVI T Move immediate registar 0 0 [} 0] 1 1 0 ?
ADC M AddmemorytoAwithaary 1 0 0 0 V1 1 @ 7 MOV M.« Move register o memory 01 1 T 0 s s 0§ 1
ADCr Addregister toAwitharry 1 0 0 06 1 S § § 4 MOV M Move memory to ¢ugister ¢ 1. o 0 O 1 Vv 0 7
AOD M Add mamory to A 0 0 0 0 1 o0 1 1 MOV, Move riginer to regisier o + © O O S § 8§ 5
A0D¢ Add register 10 A T 0 0 o 0 S s § 4 NOP No-opmstion o o o @ o 0 ¢ 0 4
A0l Add immediate to A 1t 06 e o6 1 1 o 7 ORA M Or mamory with A Y0 1 1 0 1 10
ANA M And mamory with A 0 1 0 o0 1 v o 1 ORA ¢ Or ragister with A T8 1 1 8 S 5§ 5 &
ANA ¢ And register with A t 6 1 0 0 S S 5 & oRI Or immadiate with A IS T RS N S R R I |
AN And immediate with A T v 1 0 0 1 1 o 7 out Output 11 90 10 0 1 v 10
CALL Call uncanditionat 1] [[1 1 0 1 1 PCHL H & L to program counter 1 1 1 [1 [0 1 §
[{4 Call on carsy 1] 0 1 1 1 0 0 MmNy POPB Pop register paic B & Coll] 1 0 0 [[[1 "°
™ Call on minus 1 1 4 1 1 1 [] 0 nnr ftack
CMa Compliment A 6 0 1 0 1 1 1 1 4 POP D Pop register paw O & E off P 1 0 1t 8 o0 o 1 10
oML Compliment carry [I T R TR N T T S ek
CMP M Compare memory with A LI R I T R D R POP H Pop register pair H A Lot T 1 o+ 0 o o 0o 1 0
CMP ¢ Compare register with A o 1 1 1 s s 5 4 sack :
CNC Cail 0n 0o carry 1 o0 1 0 1 0 0 POP PSW Pop A and Flags T+, 3 6 0 0 1 10
CNZ Call 0n no 2810 T 1 0 0 0 1 0 0 wnar oft sack
[Call on positive | R N T R R S T T/} PUSH B Push reginter Pair 8 & C on v 1 0 0 8 o0 1oom
CPE Cafl on parity even oy oy 0 1 v 0 0 mm ack
cP Compare immadiate with A | R T N T A PUSH 0 Puh ragister Pair D &'E on Tty 0 1 0 + o0 vom
] Cal n parity odd P11 0 0 10 o nnt ek
[%3 Calt on 2600 1) 1 2 [1 1 (] o 1y PUSH H Push register Pair H & L on] 1 1 0 [1 '] 1 n
0aA Decimal adjust A ¢ o 1 0o 0 1 1 1 & stack
DAD B AddBBECIOHAL 0 0 0 0 1 0 0 1 0 PUSH PSW Push A and Flags i 1 i 1 0 1 0 1 n
0ADO AddDBEtoHEL ¢ 0 0o 1 1 0o o 1 10 o stack
BAO N AddH&LIOHAL o 0 ¥ 0 1 0 0 v 10 RAL Rotate A left through aarry 6 o o0 ¥+ 0 1 1 Vv
0AD §P Add stack pointer 1o M & L 6 0 1 1 1 @6 o 1 10° RAR Rotate A right through o ¢ o 4 1 1 1 1 4
OCR M Decrement memory 0 0 1 1 0 1 0] 10 arny
OCRr Decrement register 0 ¢ 0] 1] 1 0 1 5 RC Raturn on carry 1 1 0 J 1 0 0 0 sm
ocx e Oscremeni B 8 C o o o0 o ' 0 ' 1 5 RET Return i 1 6 0 1 o 0 10
ocx D Oscrement D & € ¢ 0 0 10 ' 1 5 RLC Rotete A left 0o 2 o 0 0 1 1 L}
0CX H Decrament H& L 0 0 f} 0 fl 0 f 1 5 AM Return on minus 1 1 1 1 1 0 [} 5h1
0CX SP Decrement stack pointer 0 0 1 1 1 0 1 1 5 RNC Return on 0o carty i 1 0 1 0 0 [0 s
o Oigble tnterrupt LI I R R 2 I B Y) ANZ Retern on no zero T 1 0 0 0 0 6 0 s
El "Enable Interrupte LN T R ES R R R R | ‘AP Return on positive 11 oy % 0 6 0 0 sm
MLT Halt 0 1 1 1 0 1 1 0 7 RPE Return on parity sven] 1 1 [1 [[0 M
N Input T 10 1 1 0 1 1 e RPO Return 0 parity odd T 1 1 0 86 0 0 0 &m
INR M Increment memory 6 0 Vv 3 0 1+ 0o 0 10 ARC Rotate A right ¢ 06 o 6 1 0 1 4
INRT Ingrement register o 0 o8 0 D 0 0 5 RST Retart ! ! A A A 1 1 n
INX B Increment B & € registers 0 0] [0 0 1 1] RZ Return on zer0 1 ' o ° ' o 0 0 L)
INX D Incrament O & € registers 0 0 0 1 0 0 ¥ 1 5 SBB M Sublract memary from A 1 0 []] 1 1 1 [?
JANXH Ingement H & L registers [0 1 o 0 o) 1 5 with botrow
INX SP Ingemaent stack pointer 0 0 1 1 0 0 i 1 5 SBB ¢ Subtract register from A 1 0 0 1 1 - s s 4
i Jump on carry [T T S T N A I with borrow
M Jump an minus 1 1 1 1 1 0 1 0 10 s8¢ Subtract immediate from A 1 1 [} 1 1 1 1 L] ?
e Jump unconditional Tt 1 0 e o 0o 1 ¥+ 10 . with barcow
INC Jump on no aarry T 1 8 1 0 0 1 0 0 SHLD Store H & L direct ¢ o0 1 0 0 0 1 0 16
INZ Jump an na zete t 1+ 8 ¢ ¢ o 1 o w SPHL H & L 1o stack pointes [T S T R T T T
”» Jump on positive T Yy ¢ 1 0 0 1 0 W STA - Store A direct o o + 1 0 o0 1 0 1
JPE Jump on parity even [T R T T 2 R T [} STAX B Store A indirect 9 o o 0 o o 1 0 7
”»o Jump on parity 0dd t 1 1 g 0 0 v 0 10 STAX D Store A indirect o o o + 0o o0 1 0o 7
ir4 Jump on zero A 1 0 0] 0 L 10 SYC Set carry [1] 0 1 1 0 1 1 1 4
DA Load A direct o o 1+ 1 1 0 1 0 N SuB M Sudtract memary from A Y 0 0 1t 0 v 1 0 7
LoAX B Load A indirect o o o o + 0 1 0 7 SUB ¢ Subtract register from A vy 0 0 1 0 s s S &
LDAX D Load A indirect o 0 o0 1 1 o 1 o0 7 sul Subtract immediate trom A 11 o0 1 0 1 o1 0 7
LHLD Load H & L direct o 0 1+ o 1 ©0 1 0 1§ XCHG Exchange DB E, HB L LI S T R D R |
LXIB Load immediate register 0 [] 1] L] 0 0 0 1 10 Rugisters
PirBAC XRA M Exclusive OrmemorywithA 1 0 1 0 1 1 1 0 1
[R11] Losd immediate register o o o 1 0 o o 1 0 XRA T Exctusive Or register with A o2 3 0 1 s s 0§
PirDBE-. XRi Exclusive Orimmediastewith 1 1 1 0 1 1 1 0 1
LXEH Load immediate regrster ¢ o 1+ 0 0 0 o + 10 A :
P H& L XTHL Exchange top of stack, H8 L 1 1 1 0 0 0 1 1 18
Lxi Sp Load immediate stackpointer 0 0 1 1 @ 0 ¢ 1 10
NOTES: 1. DDD or SS$—000B — 001 C - 010D — 011E — 100H — 101L — 110 Memory — 111 A,

2. Two possible cycle times, {5/11) indicate instruction cycles dependent on condition flags.

From the Intel 8080 Microprocessor Systems User's Manual,

Courtesy of Intel Corporation.

-23-

APPENDIX

II. 8080 ASSEMBLY LANGUAGE REFERENCE CARD
ALPHABETICAL LISTING

OCT HEX MNEMONIC ~ OCT HEX MNEMONIC ~ OCT HEX MNEMONIC ~ OCT HEX MNEMONIC ~ OCT HEX MNEMONIC

316 CE ACI D8 71 39 DAD SP . 174 7C MOV A,H 167 77 MOV M,A 347 E7 RST 4
217 8F ADC A 75 3D DCR A 175 70 MOV A,L 160 70 MOV M,B 357 EF RST S
210 88 ADC B 05 05 DCR B 176 76 MOV A M 161 71 MOV M,C 367 F7 RST 6
211 89 ADC C 15 00 DCR C 107 47 MOV B,A 162 72 MOV M,D 377 FF RST 7
212 8A ADC D 25 15 DCR D 100 40 MOV B,B 163 73 MOV M,E 310 C8 RZ
213 88 ADC € 35 1D DCR E 101 41 MOV B,C 164 74 MOV M,H 327 9F SBB A
214 8C ADC H 45 25 DCR H 102 42 MOV B,D 165 75 MOV M,L 230 98 SBB B
215 8D ADC L 55 20 DCR L 103 43 MOV B,E 76 3t MVI A,D8 231 99 SBB C
216 86 ADC M 65 35 DCR M 104 44 MOV B,H 06 06 MVI B,D8 232 9A SBB D
207 87 ADD A 13 0B DCX B 105 45 MOV 8,1 16 Ot MvI C,08 233 9B SBB E
200 80 ADD B 33 18 0Cx D 106 46 MOV B,M 26 16 MvVI D,D8 234 9C SBB H
201 81 ADD C 53 28 DCX H 117 4F MOV C,A 36 IE MVT E,D8 235 90 SBB L
202 82 ADD D 73 38 0OCx sP 110 48 ™oV C,B 46 26 MVI H,D8 236 9E SBB M
203 83 ADD E 363 F3 DI 111 49 Mov C,C 56 2t£ Mvli L,D8 336 DE SBI D8
204 84 ADD H 373 FB EI 112 4A MOV C,D 66 36 MVI M,08 42 22 SHLD Adr
205 85 ADD L 166 76 HLT 113 48 MOV C,E 00 00 NOP 371 F9 SPHL
206 86 ADD M 333 0B IN D8 114 4C MOV C,H 267 B7 ORA A 62 32 STA Adr
306 C6 ADI D8 74 3C INR A 115 40 MOV C,L 260 BO ORA B 02 02 STAX B
247 A7 ANA A 04 04 INR B 116 4£ MOV C,M 261 Bl ORAC 22 12 STAX D
240 AD ANA B 14 0C INR C 127 57 MOV D,A 262 B2 ORA D 67 37 STC
241 A1 ANA C 24 14 INR D 120 50 Mov D,B 263 B3 ORA E 227 97 SUB A
242 A2 ANA D 3 1C INR E 121 51 Mov 0,C 264 B4 ORA H 220 90 sus B
243 A3 ANA E 44 24 INR H 122 52 Mov D,D 265 B5 ORA L 221 91 sus C
244 A4 ANA H 54 2C INR L 123 53 MOV D,E 266 B6 ORA M 222 92 sSuB D
245 A5 ANA L 66 34 INR M 124 54 MOV D,H 366 F6 ORI D8 223 93 SUB E
246 A6 ANA M 03 03 INX B 125 55 MOV O,L 323 D3 OUT D8 224 94 SUB H
346 E6 ANl D8 23 13 INX D 126 56 MOV D,M 351 E9 PCHL 225 95 SUB L
315 CD CALL Adr 43 23 INX H 137 5F MOV E,A 301 C1 POP B 226 96 SUB M
334 DC CC Adr 63 33 INX SP 130 58 MOV E,B 321 01 POP D 326 D6 SUI D3
374 FC CM Adr 332 DA JC Adr 131 59 Mov E,C 341 E1 POP H 353 EB XCHG
57 2F CMA 372 FA JM Adr 132 5A MOV E,D 361 F1 POP PSW 257 AF XRA A
77 3F CMC 303 C3 JMP Adr 133 58 MOV E,E 305 C5 PUSH B 250 A8 XRA B
277 BF CMP A 322 D2 JNC Adr 134 5C MOV E,H 325 D5 PUSH D 251 A9 XRA C
270 B8 (MP B 302 C2 JNZ Adr 135 5D MOV E,L 345 E5 PUSH H 252 AA XRA D
271 B9 CMP C 362 F2 JP Adr 136 5¢ MOV E,M 365 F5 PUSH PSW 253 AB XRA E
272 BA CMP D 352 CA JPE Adr 147 67 MOV H,A 27 17 PRAL 254 AC XRA H
273 BB CMP E 342 E2 JPQ Adr 110 60 MOV H,B 37 1F PRAR 266 AD XRA L
274 BC CMP H 312 CA JZ 141 61 MOV H,C 330 D8 RC 256 AE XRA M
275 BD CMP L 72 3A LDA Adr 142 62 MOV H,D ~ 311 C9 RET 356 EE XRI 08
276 BE CMP M 12 0A LDAX B 143 63 MOV H,E 07 07 RLC - 343 E3 XTHL
324 04 CNC Adr 32 1A LDAX D 144 64 MOV H,H 370 F8 RM 10 08 ---
304 C4 CNZ Adr 52 2A LHLD Adr 145 65 MOV H,L 320 DO RNC 20 10 ---
364 F4 CP Adr 01 01 LXI 8,016 146 66 MOV H,M 300 CO RNZ 30 18 ---
354 tC CPE Adr 21 11 LXI D,D16 157 6F MOV L,A 360 FO RP 40 20 ---
376 FE CPI D8 41 21 LXI H,D16 150 68 MOV L,B 350 E8 RPE 50 28 ---
344 E4 CPO Adr 61 31 LXI sP,D16 151 69 MOV L,C 340 EO RPO 60 30 ---
314 CC CZ Adr 177 7F MOV A,A 152 6A MOV L,D 17 OF RRC 70 38 ---
47 27 DAA 170 78 MOV A,B 153 6B MOV L,E 307 C7 RST O 313 C8 ---
11 09 DAD B 171 79 MOV A,C 154 6C MOV L,H 317 CF RST 1 331 D9 ---
31 19 DAD D 172 7A MOV ALD 155 60 MOV L,L 327 D7 RST 2 335 00 ---
51 29 DAD H 173 78 MOV A,E 156 6E MOV L,M 337 DF RST 3 g?g ED ---

D ---

D8 = constant, or expression that evaluates to an 8 bit data quantity.
D16 = constant, or expression that evaluates to a 16 bit data quantity.
Adr = 16 bit address,

-24-

APPENDIX

JI]1. 8080 ASSEMBLY LANGUAGE REFERENCE CARD
NUMERICAL LISTING

OCT HEX MNEMONIC ~ OCT HEX MNEMONIC ~ OCT HEX MNEMONIC ~ OCT HEX MNCMONIC ~ OCT HEX MNEMONIC

00 00 NOP 63 33 INX SP 146 66 MOV H,M 231 99 SBB C 314 ¢C CZ Adr
01 01 LXI B,D16 64 34 [NR M 147 67 MOV H,A 232 94 SBB D 315 CD CALL Adr
02 02 STAX B 65 35 DCR M 150 68 MOV L,B 233 9B SBB € 316 CE ACI D8
03 03 INX B 66 36 MVl M,D8 151 69 MOV L,C 234 9C SBB H 317 CF RST 1
04 04 [INR B 67 37 STC 152 6A MOV L,D 235 9D SEB L 320 DO RNC

05 05 DCR B 70 38 --- 153 6B MOV L,E 236 9 SBB M 321 D1 POP D
06 06 MVI B,D8 71 39 pAp Sp 154 6C MOV L,H 237 9F SBB A 322 D2 JNC Adr
07 07 RLC 77 3A LDA Adr 155 6D MOV L, 240 A0 AHA B 323 D3 OUT D8
10 08 --- 73 38 DCX SP 156 6E MOV L,M 241 Al ANA C 324 D4 CNC Adr
11 09 DAD R 74 3C INR A 157 6F MOV L,A 242 A2 ANA D 325 D5 PUSH D
12 OA LDAX B 75 30 DCR A 160 70 MOV M,B 243 A3 ANA E 326 D6 SU1 D8
13 08 DCX B 76 36 MVI A,D8 161 71 MOV M,C 244 A4 ANA H 327 D7 RST 2
14 0C INR C 77 3F CMC 162 72 MOV M,D 245 A5 ANA L 330 D8 RC

15 0D DCR C 100 40 MOV ©,B 163 73 MOV M,E 246 A6 ANA M 331 DO ---

16 OE MVI (,D8 101 41 MOV B,C 164 74 MOV M, 247 A7 ANA A 332 DA JC Adr
17 OF RRC 102 42 1OV B,D 165 75 MOV M,L 250 A8 XRA B 233 08 IN D8
20 10 --- 103 43 MOV B,F 166 76 HLT 251 A9 XRA C 53¢ DC CC Adr
21 11 LxI D,Di6 104 44 MOV O,H 167 77 MOV M,A 252 AA XRA D 3300 ---

22 12 STAX D 195 45 MOV B,L 170 78 MOV A,B 253 AB XRA [336 DE SBI D8
23 13 INX D 106 46 MOV B,M 171 79 MOV A,C 254 AC XRAH 337 DF RST 3
24 14 INR D 107 47 MOV B,A 172 7A MOV A,D 255 AD XRA L 340 E0 RPO

25 15 DCR D 110 48 MOV C,B 173 78 MOV A,E 256 A XRA M 341 E1 POP H
26 16 MVI D,D& 111 49 MOV C,C 174 7C MOV A,H 257 AF XRA A 382 €2 JPO Adr
27 17 RAL 112 4A MOV C,D 175 70 MOV AL 260 B0 ORA B 83 E3 XTHL

30 18 --- 113 48 MOV C,E 176 7€ MOV A,M 26} B} ORA C 344 E4 CPQ Adr
31 19 DAD D 114 4C MOV C,H 177 7F MOV A,A 262 B2 ORA D 345 E5 PUSH H
32 1A LDAX D 115 40 MOV C,L 200 80 ADD B 263 B3 OPA E 346 E6 ANl D8
33 1B DCx D 106 4E MOV C,4 201 81 ADD C 264 B4 ORA H 347 £7 RST 4
3 1C INR E 117 4F MOV C,A 202 82 ADD D 265 B5 ORA L 350 ER RPE

35 10 DCR E 120 50 MOV D,B 203 83 ADD E 266 B6 ORA M 351 £Y PCHL

36 16 MVI E,D8 121 51 MOV D,C 204 84 ADD H 267 B7 ORA A 352 EA JPE Adr
.37 IF RAR 122 52 MOV D,D 205 85 ADD L 270 B8 (MP B 353 EB XCHG

40 20 --- 123 53 MOV D,E 206 86 ADD M 271 B9 CMP C 354 £EC CPE Adr
41 21 LXI H,D16 124 54 MOV D,H 207 87 ADD A 272 BA CMP D 355 ED ---

42 22 SHLD Adr 125 55 MOV D,L 210 88 ADC B 273 BB CMP E 356 £E XR1 N8
43 23 INX H 126 56 MOV D,M 211 89 ADCC 274 BC CMP H 357 EF RST 5
44 24 INR H 127 57 MOV D,A 212 8A ADC D 275 8D CHP L 360 FO RP

45 25 DR H 130 58 MOV E,B 213 88 ADC E 276 BE CMP M 361 F1 POP PSW
46 26 MVI H,D8 131 59 MOV £,C 214 8C ADCH 277 BF CMP A 362 F2 JP Adr
47 27 UAA 132 5A MOV E,D 215 80 ADC L 300 CO RNZ 363 F3 DI

50 28 --- 133 58 MOV E,E 216 8 ADC M 301 C1 POF B 364 F4 CP Adr
51 29 DAD H 134 5C MOV E,H 217 8F ADC A 302 C2 JNZ Adr 365 F5 PUSH PSW
52 2A LHLD Adr 135 50 MOV E,L 220 90 SUB B 303 €3 JMP Adr 366 F6 ORI D8
53 28 DCX H 136 56 MOV E,M 221 91 SuB ¢ 304 C4 CNZ Adr 367 F7 RST 6
54 2C INR L 137 SF MOV E,A 222 92 SUB D 305 C5 PUSH B 370 F8 RM

55 20 DCR L 140 60 MOV 1,B 223 93 SUB E 306 C6 ADI D8 371 F9 SPHL

56 2 MVI L,D8 141 61 MOV H,C 224 94 SUB H 307 C7 PST O 372 FA JM Adr
57 2F CMA 142 62 MOV H,D 225 95 SUB L 310 €8 RZ 373 FB €l

60 30 --- 143 63 MOV H,E 226 96 SUB M 311 C9 RET 374 FC CM Adr
61 31 LXI SP,D16 144 64 MOV tI,I! 227 97 SUG A e ¢hoJ2 375 FD ---

62 32 STA Adr 145 65 MOV H,L 230 98 SBE B 313 CB --- 376 FE CPI DS

377 FF RST 7

D8 = constant, or expression that evaluates to an 8 bit data quantity.
D16 = constant, or expression that evaluates to a 16 bit data quantity,

Adr = 16 bit address.

-25-

-92_

o787
07BY
07BA
07BB
o7Bh
07BI"
07C1
07C3
o5}

0507
0501

00ro6
0005
0002
0783
0006
0007

0000
0000
0903
0004
0007
000A
006C
0001
0012

0015
0016
0017
0018
0019
001A
0618
001C

Y

31
AF
32
32
nd
(W H]
(B
C3

CL
£Y
9C
59
59
no
923
8D

Iv.

Fo

B7
C5
07
47
59
oy

o7
07
@7

ot
)
@0

APPENDIX

Program Listing, MST-80B Microcomputer Monitor Program

1
8080 MACRO ASSEMBLER, VER 2.4

KYTEM
LVALU
HVALU
PCETO
PSYWST
B3TOR
DITOR
HSTOR
OFLAG

3

KEYLD
K¥BD1

TOP
£OT

ST:

TABLC:

EQU
EQU
EQU
EQU
EQY
EaQy
EQY
EQu
EQU

EQU
£QU

EGU
Ly
Loy
Ly
e
Ly

ERRORS = 0 PAGE 1

;4 ++++++++HEX/OCT MONITOR++++—+++++
s++++++FOR MST-30 MICROPROCESSOR TRAINER+++++++

;WRITTEN BY GORUDON JONES - &/23/76
;ADDED JUHP VECTORS FOR INTERRUPTS - 3/14/79

Q7p7H
07LoU
07LAl
0TiRLBY
071D
OB
o7C1y
H7C3I
HSTOR+2

QS0
O56GIH

OFGH
OrH
21

[Vrg tivs

[~

3

IS

s+ ++++INITIALIZE ROUTINE+++++

5P ,07F0l
A

KYTER

O LAC
DisH

Di&

KEY

ST

FNTER
VISP
RN
Ky
Ky
1[¢
LuH
EXa

s INITIALIZE STACK POIRTER

;CLEAR AC

; INITIALIZYE DISPLAY STORAGE

JCGLEAR OCTAL FLAG - SET TO HEX DISPLAY
;SET EDWR FLAG TO HEX

s PUT 690 IN DISPLAY

;GO TO KEY ROUPINE

GET BACGK TO KEY ROUTINE IF NOT A CALL

; CONTRBL ROUTINES ADDRESS TABLE

LZ

1

. 8080 MACRO ASSEMBLER, VER 2.4

0020
0020

" o028
0628

0030
0030

,0038

0038
0038
063C
003D
0040
6641
. 0042
0045
0046
0047
004A
064D
004E
. 10051
. 0054
0056

0059
005C
005y

0062
© 0065
0067
¢o6ln
006LE
0071
0072
0673
0074

c3
c3

C3

22
E1

2B
22
rs
E1

22

cs

E1

22
EB
22
21

22
C3

CD
Cc2
CD

CDh
Cb
CA
CD
21

2F
B?
c2

86
80

80

c3
BB
BD

BF

Ci
BB
B9
BB
C3

49
59
71

4F
49
62
71
01

EE

96

07

07

07

07

o7
07
o7

00

01
(9]
o1

01
01
00
01
05

00

ORG

oG

oRG

ORC

" BRK:

REP:

COL:
LDKY:

ERRORS = @ PAGE 2

+++++THESE ARE THE JUMP VECTORS THAT MAY BE+++++
USED WITH INTERRUPTS. . :

261
JIF

281

Inp

301
JHP
ek
38U
SHLD

Por
110954

SuiD

I

SHLD

FVl
Joip

228611

o6seH

[Urgiloh

++TI1S IS

THE BREAK ROUTINE+++++

;STORE HG&L 1N MEMORY :

HSTOR
i ;PUT BREAIKC ADDRESS IN H&L RE
H ; COMRECT DRIC ADDR
POSTOR STORE BREAK ADDR 1IN MEMORY
rsvw iGET AC ‘AND PSW IN STACK
H JPUT AC SP58W 1N HSL -
PSWST ;PUT AC 8ISW 1H MEHORY
B sCET BEC c :
i i PUT B8C IN MEMORY
B5TOR i PUT Bed [N MEMORY
;PUT DGE 1IN H&L
DSTOR PUT D& TN MENORY
i, BKETO :1OAD BREAK MEMORY LOCATION
LVALYU ;PUT IT IN PROPER LOCATION
AL 48810 PUT BB IN AC
A CIC :DISPLAY BB AND RETURN TO KEY

i +++++KEYDUARD READ ROUTINE+++++

CALL
JN7
CALL

CALL
CALL
JZ
CALL
LXI
MOV
CEA
ora
JNZ

READ
KEY
DELAY

DIis
READ
REP
DELAY
H,KYLDI
AN

A
LUT

; CO READ KEYBOARD
;LOOP 11 KEEY DOWN
; DEBOUNCE - :

s CHECIC 1Ot CHANGE IN DISP MODE
;GO READ KEYBOARWD
- ;L0OOF IT NO KEY- DOWN
; DEROUNCE R
;SET UP COLUNN POIRTER
sREAD KEYEDARD COLUNN
; CONPLEMENT
;SET FLAGS
;GOTO LOOK UP TABLE IF KEY FOUNRD

82

1

8080 MACRO ASSEMBLER, VER 2.4

0077
0078
0079
007A
007C
007F

0082
0085
0086
0087
0088
008B
008C
008D
00906
0093
0996
0099

009C
009F
00A2
00AD
09A6
00A7
00AA
00AB
00AE
00AT
0010
0083
0014
0087

00B8
00BB
QOLE
00C1
00C4
00C5
00C8
00CB
00CE
00D]

7D
17
6F
E6
CA
C3

21
78
17
23
D2
6F
E9
3A
C3
3A
32
Cc3

3A
32
2A
LS
C1
2A

EB

2A
ES
F1
2A
ES

C9

3A
32
2A
22
<TE
32
CD
C3
2A
3A

08
71
59

14

86

B9
cs
B7
BA
39

B7
B9
BF

C1
BD

Bo
C3

B7
B9
B9
B9

B7?
4F
59
BY
Y4

20
90

00

00

o7
(2%}
©7
7
€0

838

o7
(r¢

07
07

o7
-
—

-~

07
01
00
07
(V3

CNTL:

LPi:

EXA:
LDH:

RUN:

ERRORS =
MOV A,L
RAL
MOV L,A
ANI 0811
Jz LIDXY
JIMP KEY

0 PAGE 3

+NO KEY FOUND - BUMP COLUMN POINTER
;ROTATE TO NEXT COLUMN

; PUT BACK

; CHECH. FOR LAST COLUMN

; NOT LAST COLUMI - GO READ A KEY
;NG KEY DOWN GO BACK

;+++++THESE ARE THE CONTROL KEY ROUTINES+++++

LX1
MOV
RAL
Inx
JHC
MOV
FCHL
LDA
JNP
LA
STA

JHP

LPA
STA
LHLD
Pu=H
ey
LHLD
RCHCG
LD

I, TABLC-1

A,B

H
LP1
L.M

LVALU
BACK
KY'©EM
HVALU
KLY

KY'TEM
LVALY
BSTOR
I
B
DSTOR

PSWST

KYTEN
LVALY
LVALYJ
LVALU
AT

KY'i'Lil
Dis

KLy

LVALU
KYTEM

; CET TABLE POINTER
;GET KEY VALUE
;ROTA'LE INTO CANRY
; BUMP TABLE FPOINTER

;MOVE ADDRESS IKTO L REG

; JUMP TO PROFER CONTROL ROUTINE
;GET L REGISTER VALUE

;DISPLAY 1T & JUNMP 70 KEY

;GET KEY VALUE FROM TEMP

;PUT IN H REGISTER STORAGE
DONE~- GO TO START

sGET CURRENT DISPLAY VALUE
(STORE IN L REG ZOCATION
;GET CONTENTS OF B&C REGS
;PUT O S10CK

;PUT ITH BEC REGS

sCET CONTENTS O DSE RECS

s EXCHATNCE HSL VWITH DSE

sGET OLD AC AND: P3W

;PUT A0 & PSW ¢ STACK
RESTOHE AC & STATUS

OET STARTING ADBRESS

s PUT STARTING ADBRU ON STACK
RESTOEE HSL

;GET STARTING ADER FROM STACK AND RUN

;GET CURRERT DISFLAY VALUE

i STORE IN LREG STORAGE

;GET VALUE JUST KEYED IN

STORE IN HEMNORY POINTER

;GET VALUE POILWTED TO BY MEM POINTER
s PUT TiLE VALUL IN KLY STORAGE

i DISPLAY LT

;GO BACGC ARD START OVER

s GUT HYHORY POINTER

;GET DISPLAY VALUL

62

1
8080 MACRO ASSEMBLER, VER 2.4

00D4
00D5
00D6

0009

00DnC.

00DD
00ED
00E1
06L4
0OED
Q0LY
00LED

QOEE
OOLF
GOro
00F'1
09F4
QOF5
Gorsg

60rn
GOrg
0101
0104
0107
0104
0161
610D
010
o111
o112
0113
0116
@117

011A
01118
011C
011D
011E
o11F

-4
1

23

€3

3A
2F
32
BY
(07:1
D3
C3
na
Cc3

a7
D
oF
DA
GF
DA
C3

21
ch
C3

Cb
79
Cé6
4r
21
60
00
3A
B?
C2

7K
(0)rd
(“rd
07
07
Eo6

FB

04
62

79
33
(5308
7Y
33

ro

00

(Virg
o7
(]
00

00
01
00
01
01

01
01

(714

01

HO:

HOHO:

LUT:

COL1:

COL2:

SHIFT:

HEX1 ¢

g -
ERRORS = 6 PAGE 4

MOV M,A ;PUT VALUE IN LOC POQINTED TO BY H8L

INK il ; BUMP TO NEXI' LOCATION .

JIP NEXT ;PUT INC PTR AWAY AKD DISPLAY NEXT LOC

LDA OFLAG s FETCH MEX/OQCTAL FLAG

CleA ;CHANGE TO OTIHER BASE

STA OFLAG sPUT 1T BACK

0t A ;SET-UP FOR TESTING IT

JZ HO ;JHP 1P 6 FOR BEX

our DI&0 ;MUST BE 1'S FOR OCTAL - SET DISPLAY

JHP KEY

our DEEIL ;SET DISPLAY FORR HEX 3 DIGITS

JHY KEY) .

;++++++++TH1S ROUTINE DETERMINES THE COLUMN

;++++++43TIE KEY WAS FOUND IN AD LOOKS UP

i+ +++++++VALUE IN THE APPROPRIATE TABLE.

MOV B,/ ;SAVE AC

HOV AL . sGET COLUMN POINTER

RRC sROTATE COL POINTER RIGHT

JC coL1 ;1S IT COLt?

REC sROTATE AGAIN

JC COL2 ;15 1T COL2?

Bivty CN'IL ;MUST B CONTROL COLUMN

LXI H, TABLE-1 ;GET TABLE POINTER .

CALL DECHD ;€0 GET VALUE FR&M TABLE

JHp SUIPT ;STORE AND SEND TO DISPLAY

LX1 I.TABLE-1 ;GET TABLE POINIEH

CALL DECOD ;GET VALUE VROW TABL)

MGy A.C ;PUT 'PAGLE VALUE IN AC

ADY 21 ; CORRELT VALUE 1Ot COLUMN 2

MOV C,n

Lxi I, KYTEM ;GET OLD DISPLAY VALUE

NG®

0P

LDA OFLAG ; CHECK HEX/0CT FLAG

ORA A ;SET FLAGS

JNZ 0LT1 ;60170 OCTAL IF FLACG IS A 1

nNev A1 ;GET KEY CODE

RLG ;ROTATE ONE HEX DIGIT LEFT

RL(

RLC

RLE

ANI oren ;MASK OFF BOTTOM DIGIT

_OE-

1
8080 MACRO ASSEMBLER, VER 2.4

TN .

0121
0122
0123
0126

9127
0128
0129
012A
012B
9120
012E
012K
9132

0133
0134
0135
0136
0139

013A
013D
013E
0141

0142
0143
0143
0146

0149
014C
014D
014LE

014F
01562
0153
0156
0157
013
01955
9150
015E

B1
77
CD
Cc9

(308

o7
o7
07
E6
B

77
CD
Cco9

78
17
23
b2
4E

3A

T4
c2
Cco

79
Lo
Cy
C3

3A
oF
B?
Cc9

3A

&J
3A
BY

c2

79
n3
Cco9
79

ra

97

01

U)

07

oL

OCT1:

DECOD:
AGAIN:

0CT2:

READ:

DIS:
DISPLAY:

HEX:

OCT:

ERRORS =
oA C
MOV M,A
CALL DIS
RET
MOV A,M
RLC
RLC
RLC)
AN} 37¢Q
ORA C
MOV HM,A
CALL DIS
RET
HOV A,B
RAIL.
1IN H
JAC AGAIN
HOV C,H
LDA OFLAG
ora A
JNZ 0CT2
REY
MGV A,C
AR} 370G
RZ
JNF KEY

0 PAGE 5

;OR REW DIGIT 70 OLD FNUMBER

3PUT BACK IN DiSPLAY STORAGE

;SEND TO DISPLAY
;END Of NUMBER KEY ROUTINE

;GET KEY CODE
;ROTATE ONE OCTAL DIGIT LEFT

sMASK OFF BOTTOM DIGIT

;OR NEW DICGIT TO OLD NUMBER
;PUT BACK I[N DISPLAY STORAGE
;SEND TO DISPLAY

sGET KRY VALUER
JBOTATE ITO0 CARRY
; BUEP TABLE POINTER
;SAVE KEY CODE

s CHECIK HEX/0CT FLAG
JSET FLACS

; I¥ TN OCTAL HODE JUMP TO CHAR CHECK

sGET KisY VaLU=

sHARIC O] LOWER BHIGIT
SRETURN TP LESAL OCTAL NUMBER
s ITLLEGEL CHAR. GOt KEY

;+¥+++ROUTINE TO READ KEYBOARD*++++

L4
CMa
(VRY

R¥T

KEYBD
A

READ KEYROARD
s COHMPLEHMENT
i SEEF FLAGS

3 +++++++ROUTINE TO DISPLAY HEX OR OCTAL++++++++

LIy
MOy
L
ORA
JhiA
Ptk
our

IROEY

HGY

KY'TEH
C.A
OFLAG
A

0T
A,C

0

A,C

HEM - GET AC
JSEND TO DISPLAY

s GET NUMLER TO DISPLAY

lE

1

8080 MACRO ASSEMBLER, VER 2.4

615F
6160
¢l1e1
0163
6163
8160
0167
0i69
016A
0163
0i&D
616k
0176

07

Eo6
D3
79
¢
) OF)
47

ks
LY

Lo
%
B3
Co

06
64
3
3
g2

€9

690
08
6C
o1
@5
09
oD

03
65

RO PiOGRAM iRORS

DELAY:
LOOP:

TABLE:

RLC
RLC
ANI
ouUt
MOV
RAL
ANT
HOV
MOV
AN]
[AREY
ou't
KET

e N
ERRORS = 0 PAGE 6
sGET HIGH OBDER DIGIT
;ROTATE 1NTO POSITION
3Q ;@AVE HIGH ORDER DIGIT
5 sDISPLAY HIGH ORDER DICGIT
A,C ;GET NUMBER AGAIN
;PMIOVE 20D DICGIT INTO POSTION
166Q sSAVE MIDDLE BIGIT
B.A ;SAVE MIDDLE Bi1GIT
A, G ;GET NUMBER AGATIN
v ;GET 18T DICIT
B ;COMBINE DIGITS 1 8 2
% s DISPLAY 'THEH

;+++4++++THIS IS A DELAY ROUTINE TO DEBOUNCE THE SWITCHES++++++

LAY

DE
D
B
HI
153
be
3131
DL
ERD

5,6 s INITIALTZE COUNTER
B ; BUITP COUNTER

; EXTRA DELAY IN LOOP
LOOP : LOGP UNTIL ZERO
00} s NUMBER KEY CODE TABLE
Gall :
G
OCH
Oy
OHH
4H
oDl

ZE

1
808% MACRO ASSEMBLER, VER 2.4 ERRORE = O PAGE 7

SYMBOL TABLE

* 01

A 0967 AGAIN 0134 B 0000 BACK 00C5
BKSTO 97BB EOT Q900F * BRK 9038 = BSTOR OYBF
C 9801 CNTL GHH2 COL GO6E = COL1 B0FB
COL2 6104 D Goo2 DECOD 6133 DELAY 9171
DIS 0141 DISH ¢o%57 DISO aedo ISP 9G53
DISPL 0152 * BSTOR O7CI E 6603 ENTER ©O0CE
FXA 008D H Q054 HEX 915A % HEX1{ o1iB
HO 6219 HOHO GIE9 HZTOR 67C3 HVALU 97BA
INIT oG * KEY FEYBD 6507 KYBD1L 6391
KYTEM 6G7B7 i LBk 6093 LINCY H5O7 1
LOOP 0173 Lyl 1uT OOEER LVALU @7B9
M GNO6 NEXT SCT 0158 GCT1 D127
OCE2 0142 OFLAG 67Co PCSTO O7BB PEW 0396
PEVST 678D REEAD 0149 REP 6eo62 RIEAD G092
RUW ©09C SHIVT O16L &ap O6Go - 8T GOOF
TAELC 6615 TABLE 0©017A ToP 06ro x

This report was prepared as an account of work sponsored by the United States Government. Neither the
United States nor the United States Department of Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use would not infringe privately owned rights.

Reference to a company or product name does not imply approval or reccommendation of the product by
the University of California or the U.S. Department of Energy to the exclusion of others that may be
suitable.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy $:Microfiche $3.50

Domestic Domestic

Page Range Price Page Range Price
001-025 $ 5.00 326-250 $18.00
026-050 6.00 351-375 19.00
051-075 7.00 376-400 20.00
076-100 8.00 401-425 21.00
101-125 9.00 426-450 22.00
126-150 10.00 451-475 23.00
151-175 11.00 476-500 24.00
176-200 12.00 501-525 25.00
201-225 13.00 526-550 26.00
226-250 14.00 551-575 27.00
251-275 15.00 576-600 28.00
276-300 16.00 601-up '

301-325 17.00

1
Add 2.00 for each additional 25 page increment from 601 pages up.

Technical Information Department

LAWRENCE LIVERMORE LABORATORY
University of California | Livermore, California | 94550

